
Learner Outcomes

Each reader of this article should be able to

- Explain how cognitive deficits that accompany aging can affect speech understanding.
- Name two neurocognitive tests that assess speed of processing.
- Identify the neurocognitive test demonstrating the strongest association with sentence test performance in a group of older adults.

1. Two age-related cognitive deficits that may affect speech understanding in older adults are:
 - memory loss and speed of processing declines
 - verbal recall and declining IQ
 - working memory and speed of processing declines
 - speed of processing and decision-making declines

2. Specific cognitive deficits may be associated with lack of benefit from hearing aids in some older adults because:
 - cognitive limitations increase difficulty learning to use hearing aids
 - speech processed through hearing aids may be cognitively demanding
 - poor recall makes remembering instructions difficult
 - speech in noise is more challenging with hearing aids

3. A computerized working memory test that has been used with functional MRI studies of brain function is the:
 - N-Back Test
 - Self-Ordered Pointing Test
 - WAIS-III Digit Span subtest
 - WAIS-III Letter-Number Sequencing subtest

4. The WAIS-III Letter-Number Sequencing subtest (LNS) measures:
 - attention
 - visual working memory
 - auditory working memory
 - verbal working memory

5. Neurocognitive tests in this study that assessed speed of processing included:
 - Conners’ Continuous Performance Test and Brief Test of Attention
 - Self-Ordered Pointing Test and WAIS-III Digit Span subtest
 - California Verbal Learning Test-II and WASI IQ test
 - Choice Reaction Time and WAIS-III Digit Symbol Coding test

6. Auditory items from neurocognitive tests were:
 - recorded speech presented via earphones
 - live voice
 - recorded speech presented via loudspeaker
 - no tests with auditory items were used

7. Speech recognition materials were equated for difficulty by varying:
 - presentation levels
 - time compression
 - signal-to-noise ratios
 - low-pass filtering cutoff frequencies

8. The three cognitive components of the principle component analysis:
 - accounted for 61% of the total variance of the common sentence recognition score (CSRS) results
 - were derived from age-adjusted individual cognitive test scores
 - reduced ten individual cognitive test scores to three factors not reported by Vaughn et al (2006)
 - reduced ten individual cognitive test scores to three cognitive factors

9. In this study, age, hearing loss, and cognitive variables accounted for what percentage of the variance of CSRS results?
 - 28%
 - 42%
 - 65%
 - 80%

10. The neurocognitive measure that demonstrated the strongest association with sentence performance was:
 - LNS
 - N-Back Test
 - Conners’ Continuous Performance Test
 - California Verbal Learning Test-II