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Abstract 

The efficacy of utilizing an automated algorithm to identify auditory brainstem responses 
(ABR) was studied . A microcomputer-based threshold-seeking algorithm utilizing click-
evoked ABR was developed to determine evoked-response thresholds for automated 
hearing screening. The software consists of an evoked-response recognizer unit, which 
determines the presence or absence of a response, and a threshold-tracking unit, which 
controls the click intensity in order to track the threshold. The response recognizer is based 
upon correlation methods. Threshold tracking is accomplished using a Parameter Estima-
tion by Sequential Testing (PEST) procedure, which is commonly used to study psychophysical 
properties of the auditory system . Sound level is automatically adjusted, based on the results 
of the recognizer and the threshold tracker. Test results were generally obtained in less than 
15 minutes per ear. The results of the automated procedure correlate very highly with expert 
judgments of ABR threshold and show good test-retest reliability, suggesting that automated 
procedures are viable alternatives to traditional testing methods. 

Key Words : Auditory brainstem response (ABR), electrophysiologic hearing testing, 
evoked potentials, hearing screening 

R 

ecently, hearing screening and testing 
of newborns and infants using electro-
physiologic signals have gained wide- 

spread acceptance and have come to be pre-
ferred over other, less accurate techniques . The 
early portion of auditory evoked potentials called 
auditory brainstem response (ABR) has become 
the clinical standard of electrophysiologic hear-
ing testing and has been the technique of choice 
for hearing screening in newborns (Hyde, Riko 
and Maliza,1990 ; Jacobson, Jacobson, and Spahr 
1990 ; Joint Committee on Infant Hearing, 1990). 
ABR reflects synchronous firings of the auditory 
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nerve and brainstem pathways that are often 
associated with hearing sensitivity . ABR pro-
vides highly specific and sensitive test meas-
ures for purposes of hearing screening and 
testing (e.g ., Stein, 1984 ; Hyde et al, 1990 ; 
Jacobson et al, 1990 ; Shimizu, Walters, Proc-
tor, Kennedy, Allen, and Markowitz, 1990). 
Clinical use of ABR devices for both screening 
and threshold determination is limited, due to 
the high cost of programs both in terms of 
instrumentation and professional personnel 
necessary for implementation . Most current 
devices require clinical monitoring of patients 
during testing and customized expert param-
eter selection for acquisition of noise-free re-
cordings . 

Recently, the National Institutes of Health 
convened a consensus development conference 
on early identification of hearing impairment 
in infants and young children (NIH,1993) . The 
consensus panel recommended the adoption of 
universal hearing screening for newborns . Re-
cognizing that universal screening would be 
expensive utilizing current technology, the 
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panel urged further research on new techniques 
for hearing assessment, including the develop-
ment of automated procedures . 

One method of facilitating the use of ABR 
for purposes of universal screening is to develop 
automated algorithms that require minimal 
human intervention . Automation can be 
achieved at various levels for different goals 
and applications . The simplest level of automa-
tion can be achieved by obtaining some requi-
site number of waveforms at specified levels 
followed by an analysis of pass/fail criteria for 
each stimulus level independently . Such a pro-
cedure can be used to classify responses into 
two or three categories : pass, fail, or could not 
test . A higher level of automation can be achieved 
if an algorithm is designed that determines the 
ABR threshold by properly changing stimulus 
level, detecting responses, and properly termi-
nating the test when threshold is determined . 
This second level of automation requires the 
implementation of a tracking algorithm. Even 
higher levels of automation can be achieved by 
analyzing waveforms produced by different level 
stimuli in a context-sensitive manner, labeling 
waveforms, and extracting information such as 
latency-intensity functions for further diagnos-
tic purposes . 

Many techniques for achieving the first 
level of automation have been proposed (for a 
review, see Ozdamar, Delgado, Eilers, and 
Widen, 1990 ; Dobie,1993). Some of the methods 
that have been proposed are template match-
ing/matched filtering (Thornton and Obenour, 
1981 ; Woodworth, Reisman, and Fontaine,1983), 
F-ratio/SNR calculation (e .g ., Don, Elberling, 
and Waring, 1984 ; Elberling and Don, 1987), 
phase analysis (e.g ., Beagley, Sayers, and Ross, 
1979 ; Greenblatt, Zappulla, Kaye, and Fridman, 
1985), signal power (variance) analysis (e.g ., 
Arnold, 1985; Delgado and Ozdamar, 1990b), 
cross-correlation analysis (e.g., Weber and 
Fletcher, 1980; Arnold, 1985 ; Ozdamar et al, 
1990), artificial neural networks (Alpsan and 
Ozdamar, 1992 ; Ozdamar and Alpsan, 1992), 
and coherence analysis (e.g., Dobie and Wilson, 
1989). In spite of the multitude of proposed 
detection methods, only one device (Algo) has 
been commercialized for automated screening 
(Thornton and Obenour, 1981; Peters, 1986). 
This device was designed for hearing screening 
purposes only (classification of the test popula-
tion into pass/refer categories) and has been 
used clinically (Kileny, 1987; Jacobson et al, 
1990). 

While the abundance of research has been 
directed toward the development of level one 
response detection, little research has been 
directed towards the development of level two 
automated threshold-finding algorithms . Re-
cent studies show that machine detection of 
ABR thresholds can be nearly as accurate as 
human detection when off-line strategies are 
used (Don et al, 1984; Mason, 1984 ; Arnold, 
1985; Elberling and Don, 1987; Ozdamar, 
Delgado, Miskiel, Eilers, and Widen, 1987b; 
Ozdamar et al, 1990). Although threshold seek-
ing has seldom been a goal of screening, largely 
because threshold determination is typically a 
lengthy procedure, threshold information that 
could be obtained from a rapid, automated test 
would be preferable to information obtained 
from screening. In principle, a level two auto-
mation procedure could be valuable in screen-
ing, because it could be used to classify the test 
population into diagnostically significant risk 
categories such as those associated with nor-
mal, mild, moderate, or severe hearing loss. 
When effectively used, such information could 
reduce the number of clients who fall into the 
"fail" or "refer" groups by differentiating be-
tween potential losses that are likely due to 
middle ear function and those of greater imme-
diate concern. If level three automation with an 
automated wave identification and latency-in-
tensity determination algorithm (Delgado and 
Ozdamar, 1990a) is added to threshold deter-
mination, then the procedure could be used for 
automated, rapid diagnostic testing as well . 

In order to implement level two automa-
tion, a tracking procedure must be used . Adap-
tive threshold-tracking algorithms similar to 
those used in psychophysical research can be 
implemented to achieve reduced time for closed-
loop operation and to obviate the need for pro-
fessional intervention duringtesting. One adap-
tive tracking procedure, Parameter Estimation 
by Sequential Testing (PEST) (Taylor and 
Creelman, 1967), is widely used in auditory 
psychophysics. The PEST procedure generally 
starts at an intensity in the middle of the 
expected range and operates by halving of the 
step size upon reversal in the direction of the 
level of the stimulus . When the step size dimin-
ishes to a size smaller than a preset value, the 
procedure is terminated . PEST has been intro-
duced to track evoked-response thresholds in 
humans (Ozdamar et al, 1987b, 1990) and ani-
mals (Salvi, Ahroon, Saunders, and Arnold, 
1987). These studies showed that PEST, when 
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coupled with a response-detection algorithm, 
can be successfully used in electrophysiologic 
response determination . 

In a previous study, we developed a compu-
ter simulation method to test various ABR 
recognition and threshold-tracking procedures 
for on-line use (Ozdamar et al, 1990). Two 
response-analysis methods (amplitude variance 
ratio and cross-correlation) and three thresh-
old-tracking methods (clinical, Bekesy, and 
PEST) were studied. Off-line simulations based 
on data obtained from 15 subjects showed that, 
on the average, both response-recognition meth-
ods gave acceptable results. Thresholds ob-
tained with the variance ratio method, how-
ever, resulted in greater variability . The on-line 
use of both methods, however, resulted in sig-
nificant differences in test efficiency, due to 
differences in tracking methods. The PEST 
method appeared to be the most efficient track-
ing method, with the clinical method second in 
efficiency . These results showed the feasibility 
of an on-line ABR threshold-seeking system for 
automated, electrophysiologic hearing testing. 

This paper reports the development of a 
level two, automated, on-line algorithm imple-
mented in a dedicated device for hearing testing 
with auditory brainstem responses. The device 
operates in real time to achieve a desired meas-
urement goal and obviates the need for human 
intervention for: (1) determining stimulus lev-
els by using a tracking procedure; (2) discarding 
responses of undesired origin ; (3) recognizing 
the presence of a response ; and (4) analyzing the 
overall results to predict hearing thresholds 
with accuracy and efficiency. 

SYSTEM CONFIGURATION FOR 
THRESHOLD DETERMINATION 

Figure 1 Functional system block diagram. Informa-
tion flow during automated use is shown by thick arrows. 
Interrupted line arrows show information flow for param-
eter setting before initiating the automated operation. 

METHOD 

Hardware 

The automated algorithm is implemented 
in a microcomputer (IBM PC AT) equipped with 
a digital signal processor (40 MHz TMS320C25 
DSP chip) and a digital-sound stimulator . The 
system is controlled by an 80286 microproces-
sor using interactive, menu-based software de-
signed for efficient use of dual processors 
(Ozdamar, Kaplan, Miskiel, and Delgado, 
1987a) . 

Brain waves were acquired with a 
bioamplifier (gain 100,000 ; filters 100-3000 Hz; 
6 dB/oct) and digitized with a 12-bit A/D con-
verter. Sampling rate was set at 40 kHz and 512 
post-stimulus data points were recorded . Aver-
aging was done by the DSP board by summing 
1024 sweeps in a 32-bit buffer . 

ABRs were generated by clicks, which were 
produced using a 16-bit D/A converter operat-
ing at a 10-kHz sampling rate . Rectangular 
clicks having widths of 100psec were generated. 
Attenuation was accomplished using two dig-
ital attenuators, each with an 80-dB range. 

Software 

The functional configuration of the system 
is shown in Figure 1 . The system software is 
organized into four subunits by a system con-
troller, which provides the user interface. The 
controller directs the closed loop as a function of 
the outputs of the response-recognition and 
threshold-tracking units and directs the 
stimulator control programs . 

Preprocessing and synchronized averaging 
were accomplished by the DSP program. ABRs 
were acquired by averaging 1024 sweeps con-
taining 512 post-stimulus data points collected 
at a sampling rate of 25 gsec . Averaging is done 
by summing 12-bit data values in a 32-bit buffer. 
Prior to averaging, each single-sweep response 
was demeaned in order to prevent any un-
wanted overflow of the buffer, due to electrode 
or amplifier do shifts . An artifact-rejection 
method based on amplitude level was imple-
mented in the DSP to eliminate single-sweep 
responses with amplitudes over a pre-estab-
lished criterion. This was accomplished in soft-
ware by using a separate buffer area for single 
sweeps. Averaging was started after the com-
plete sweep was collected and checked for arti-
facts. In this study, the artifact-rejection level 
was set at ±10 pV. After averaging, 512 post- 
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stimulus ABR values were transferred to the 
microcomputer and converted to floating-point 
format for further processing . 

Algorithms 

Response Recognition 

A method utilizing windowed cross-corre-
lation of consecutive averages was implemented 
for response recognition (Ozdamar et al, 1987b, 
1990; Delgado, Ozdamar, and Miskiel, 1988). In 
this method, two separate responses x(n) and 
y(n) obtained at the same level are cross-corre-
lated within seven overlapping windows, with 
results Rxyl, Rxy2> . . . , Rxy7 as follows: 

Rxyl 

1 

i = 1, . ..,7 Eq . 1 

where m.. mean of x(n) within the ith window ; 
my . mean of y(n) within the ith window ; a. 
beginning of the ith window ; b. ending of the ith 
window . 

The window widths of 2 msec were used 
following optimization studies designed to mini-
mize false positive and false negative errors. 
The windows were positioned to cover 5 to 10 
msec ranges for the detection of wave V at all 
intensities . Again, a maximum correlation pa-
rameter R was selected from the seven xymax 
outcomes (Eq. 2) and was compared with a level 
criterion Cxy for classification (Eq. 3) . 

Rxymax --, Max {Rxyl} Eq.2 

T = +1 if Rxymax ? Cxy for "Response" 
T=-1 if Rxymax < Cxy for "No Response" Eq . 3 

The criterion Cxy was set to 0.7 after optimi-
zation studies. An example of response recogni-
tion with the windowed cross-correlation 
method is shown in Figure 2. A maximum cross-
correlation outcome of 96.93 percent is ob-
tained from the first window, which is above the 
criterion, and the recordings are recognized as 
a "Response." 

b, 

Lr L(x(n) - m.,) (y(n) - my,)] 
n=a, 

b, 

Lr 
Wn) - mx,)2 X 

n=a, 
V 

ABR X 

ABR Y 

SPLIT-SWEEP RESPONSE 
RECOGNITION METHOD 

IIIIIII 
0 2 4 6 8 10 msec . 

Cross 
Correlation 

Window 1 ~--~ 96.93 
Window 2 ~----~ 80.81 
Window 3 F--~ 85.59 
Window 4 I-~ 93.36 
Window 5 ~~ 90.53 
Window 6 F---~ 49.18 
Window 7 F-~ 19.97 

Figure 2 Windowed cross-correlation response-recog- 
nition method . 

SIMPLIFIED PEST ALGORITHM 
FOR HEARING THRESHOLD 

DETECTION 

HEARING THRESHOLD FOUND 

Figure 3 PEST algorithm for hearing threshold deter-
mination . 
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Threshold Tracking 

As a result of its success in a previous 
simulation study (Ozdamar et al, 1990), PEST 
procedure was utilized and adapted for 
electrophysiologic threshold tracking and de-
tection (Fig . 3) . The strength of the PEST proce-
dure is that it rapidly converges on threshold, 
spending little time at high levels . The initial 
stimulus level was set to 50 dB HL and the 
initial step size utilized was 20 dB. A "Re-
sponse" resulted in a reduced stimulus inten-
sity, while a "No Response" resulted in an 
increased intensity based on the current step 
size. The step size was reduced by half, with 
each reversal in the staircase direction, and 
doubled, following a failure to detect a response 
in two consecutive level tests. The process was 
terminated when the step size became less than 
5 dB and the threshold was specified as the level 
midway between the outcomes of the last two 
trials . 

Figure 4 shows a testing path obtained 
from a normal subject (top) and the averaged 

m 

Figure4 An example of a threshold-tracking path (top) 
and the corresponding ABR recordings (bottom) from a 
single test of a normal-hearing subject. 

responses obtained at the corresponding levels 
(bottom). Responses were obtained initially at 
50 and 30 dB. No response was obtained at 10 
dB . Accordingly, the step size was halved pre-
ceding the change in direction of the path . On 
the ascending series, a response was obtained 
at 20 dB, the step size was again halved, and the 
direction of the path changed to descending . A 
response was then obtained at 15 dB but not at 
10 dB. Since step size was already 5 dB, the test 
was terminated and threshold determined half-
way between the last two test levels (i .e ., 13 dB 
HL). 

Data Acquisition 

Subjects 

In order to test the broad applicability of 
the level two automation approach to threshold 
seeking, a broad sample of subjects was de-
sired. Accordingly, we tested infants, young 
children, adolescents, and a range of adults 
from young adulthood to old age. The procedure 
was tested in the laboratory with 105 subjects 
(54 males and 51 females). Of these subjects, 66 
were adults (28 males and 38 females) with an 
age range of 13 to 85 years and a mean age of 34 
years. Among these adult subjects, 31 ears had 
sensorineural hearing losses, while 2 ears had 
conductive and 2 had mixed losses . 

The remaining 39 subjects were infants or 
young children (26 males and 13 females) with 
a mean age of 10 months and a range of 11 
weeks to 3.6 years. Among the infants, 8 ears 
had sensorineural hearing loss and 6 had con-
ductive losses . 

Of the 105 subjects, 46 subjects (29 adults, 
17 infants) were tested using both ears, 56 
subjects (35 adults, 21 infants) were tested 
using one ear, and 3 subjects (2 adults and 1 
infant) could not be tested, due to excessive 
muscle artifacts. In addition, 45 tests (28 adult 
and 17 infant) were repeated for the purpose of 
obtaining test-retest reliability . In order to 
simulate conductive hearing loss, 6 normal adult 
ears were plugged with foam earplugs and ABR 
tests were conducted, followed by assessment 
of behavioral threshold for the plugged ears . 
Four of these ears were retested, providing 10 
tests with plugged ears. 

One hundred and thirty-one tests were ob-
tained from adults, including repeated and 
plugged ear tests. Six of these tests were elimi-
nated, because ABR experts found them too 
noisy to be used for threshold determination . 

81 



Journal of the American Academy of Audiology/Volume 5, Number 2, March 1994 

Seventy-two tests were obtained from infants, 
including repeated tests. Four tests were elimi-
nated, because they were too noisy for accurate 
threshold determination . Altogether, 193 tests 
were analyzed. 

Procedures 

Automated ABR testing was conducted in a 
sound-attenuated room by a technician who did 
not know how to interpret ABR tests. Adults 
were tested using either TDH-39 earphones 
coupled with MX/41 AR cushions or Etymotic 
ER-3A insert earphones with modified imped-
ance tip adapters . Infants were tested with 
insert earphones. Alternating clicks were used 
as stimuli. The peak equivalent SPL for 0 dB 
HL (in reference to normal hearing level) was 
32 dB (reference 3 kHz) . 

Recording was accomplished using gold-
cup electrodes filled with bentonite paste at-
tached to vertex (noninverting), ipsilateral 
mastoid (inverting), and contralateral mastoid 
(ground) . Impedance of the electrodes was less 
than 10 kQ at all times. Testing was accom-
plished without sedation . Infants were tested 
in natural sleep, often following feeding. All 
recordings, along with the duration of tests and 
the resulting automatically determined thresh-
olds, were automatically saved for later analy-
sis and evaluation by experts. 

ABR recordings from all tests were sepa-
rately evaluated by three experts who had at 
least 2 years of experience in interpreting 
ABRs . Two of these experts were auditory 
electrophysiologists and biomedical engineers 
(first two authors) and the third was a certified 
audiologist specializing in ABR testing. The 
experts were presented with all recordings (con-
taining suprathreshold as well as subthreshold 
plots) on paper, ordered according to stimulus 
level. The experts were blind to the level of the 
automated threshold and did not have access to 
the nature or degree of the subject's hearing 
loss, if any. 

The experts evaluated the recordings for 
each test independently and determined a re-
sponse threshold. If an expert determined that 
the recordings were too noisy for reliable thresh-
old determination, the test was marked as 
noisy. The average of the expert-derived thresh-
olds was used to compare and evaluate the 
results of the automated method. Tests were 
identified as unreliable if one or more of the 
experts rated the recordings as too noisy to 
score and refused to assign a threshold. These 

tests were eliminated from further evaluation . 
Tests were also eliminated if experts differed by 
more than 10 dB on their judgments of thresh-
old, since for these tests a "gold standard" could 
not be determined . Altogether, 10 tests were 
eliminated as too noisy or unreliable . 

The hearing status of adults was evaluated 
primarily by pure-tone audiometry (air and 
bone conducted) obtained within a few days of 
ABR testing. Adult data consisted of audiograms 
with thresholds at 0.25, 0.5, 1, 2, 4, and 8 kHz. 
Impedance and speech audiometry were per-
formed as needed for evaluation of hearing 
status. Hearing status of ears plugged with 
foam earplugs was separately evaluated using 
standard pure-tone audiometry with the ear-
plugs inserted. For four ears, adequate audio-
grams could not be obtained . 

The hearing status of the infants was evalu-
ated when they reached about 6 months of age 
or, if they were older, within a few days of the 
administration of the ABR test, using an auto-
mated visual reinforcement audiometry device 
(Widen and Bull, 1984 ; Widen, 1990) in the 
sound field. Accordingly, threshold estimates 
were assumed to apply to both ears, and, in fact, 
in infants in whom both ears were tested with 
ABR, expert-derived thresholds for the two 
ears did not differ by more than 8 dB, with one 
exception. Hearing was evaluated with the two 
signals that were available in the device, low-
pass filtered speech noise and a 4-kHz narrow-
band noise. Infants and young children were 
first screened with these stimuli, followed by a 
maximum likelihood sequence to determine 
threshold. For the purpose of this study, thresh-
old information at 4 kHz for 55 tests was avail-
able and used for comparison with the ABR 
results, since the high-frequency information 
obtained from the behavioral test could be ex-
pected to correlate well with click ABR data. 

RESULTS 

Automated versus Expert ABR Thresh-
old Errors 

The automatic thresholds determined by 
the algorithm were evaluated by comparing 
them with the expert-derived thresholds . The 
mean automatic threshold for adults was 22.8 
dB HL (SD =14.8), compared to 23.3 dB HL (SD 
=14.0) for experts. The mean automatic thresh-
old for infants was 20.4 dB HL (SD = 20.9), 
compared to mean expert thresholds of 20.9 dB 
HL (SD = 17.1) . Threshold errors were com- 
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Figure 5 Threshold-error histogram of the automated 
system, including all tests. All errors are calculated by 
referring to the expert decisions. 

puted by subtracting the machine threshold 
from the expert threshold. The distribution of 
the errors is plotted for all subjects and tests in 
Figure 5. As expected, the distribution of devia-
tion scores appears to be Gaussian. For adult 
subjects, the mean error threshold score (auto-
mated threshold-expert-derived threshold) is 
-0 .5 dB, with a standard deviation of 5.9 dB . For 
infants, the mean is -0.5 dB, with a standard 
deviation of 6.4 dB . In 193 tests, 7 (3.6%) thresh-
old scores fell outside of 2 standard deviations of 
the mean . Of these scores, most (five) were 
machine underestimates of threshold. One test 
produced an overestimate of threshold. 

In order to evaluate the degree of agree-
ment between automated and expert judgments, 
behavioral and electrophysiologic estimates, 
and multiple tests of the same ear, two statis-
tical measures were used . Regression lines were 
fit to the data to assess the linear relationship 
between automated and expert threshold judg-
ments. Regression provides a least-squares fit 
of the data where disagreements are weighted 
by their magnitude. Thus, it is possible to have 
high regression coefficients if error is sym-
metrically distributed around the regression 
line . Kappa, on the other hand, was used to 
assess the degree of agreement in a categorical 
manner (Kraemer, 1982). The data were sorted 
into two categories, agreement or nonagree-
ment . In the following analysis, two scores were 
considered in agreement if they were within ±5 
dB. The magnitude of the disagreement is not 
considered by Kappa. Thus, Kappa provides a 
view of absolute agreement and will typically be 
smaller than would be expected from the re- 
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Figure 6 Scattergram of automated versus expert-
derived thresholds for adults . 

gression results. In evaluating the magnitude 
of Kappa, the following terms are applied: 
< .8 = almost perfect agreement; .6- .8 = sub-
stantial agreement; .4- .6 = moderate agree-
ment ; .2 -.4 = fair agreement; > .2 = slight 
agreement (Landis and Koch, 1977). 

Figure 6 shows a scatterplot of the relation-
ship in dB between expert-derived and auto-
mated thresholds for adult tests (n = 125) . The 
scatterplot illustrates that the deviations around 
expert threshold level are not a function of 
absolute threshold level, though most of the 
deviations occur between 40 and 50 dB. A re-
gression analysis of these data shows a regres-
sion coefficient of 0.87, with a standard error of 
5.6 dB . The correlation coefficient (R2) indicates 
that 84 percent of the variance is accounted for 
by the relationship between the two test scores . 
Kappa is also quite high (.78), indicating sub-
stantial agreement between machine and ex-
pert observers. 

Figure 7 shows a scatterplot of the relation-
ship in dB between expert-derived thresholds 
and automated thresholds for all infant tests (n 
= 68). As can be seen from the figure, the 
relationship between expert and automated 
thresholds is even more robust for the infant 
than for the adult data . Only two test scores 
(2.9%) fell beyond two standard deviations of 
the regression line . The regression coefficient 
for infants is 0.80, with a standard deviation of 
5.0 dB . R2 indicates that 91.6 percent of the 
variance is accounted for. Kappa (.85) is also 
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Automated vs Expert Thresholds (Infant) 
100 

Expert Threshold (dB HL) 
Figure 7 Scattergram of automated versus expert-
derived thresholds for infants. 

higher for infant tests than for adult tests. This 
highly significant value suggests almost per-
fect agreement between the expert and ma-
chine judgments. Overall, automated thresh-
olds for infants seemed to be more accurate 
than for adults, probably because infant ABRs 
were acquired while infants slept, while adult 
data was collected from resting, but not usually 
sleeping, adults . 

Automated ABR Thresholds 
versus Behavioral Hearing-Threshold 
Correlates 

Pure-tone averages (PTAs: mean threshold 
at 0 .5, 1, and 2 kHz and PTA2 : mean threshold 
at 1, 2, and 4 kHz) have long been used to 
capture the essence of a hearing loss and to 
compare behavioral thresholds with ABR click 
data (Jerger and Mauldin, 1978). Pure-tone 
averages were compared with both automated 
thresholds and thresholds derived by the ex-
perts. Figure 8 illustrates the relationship be-
tween PTAI (A) and PTA2 (B) and the auto-
mated threshold levels . As can be seen, the 
regression coefficient between PTAI and auto-
mated threshold (x = 0.53) is slightly poorer 
than the coefficient between PTA2 and thresh-
old (x = 0 .58) . The relationship between PTAI 
and automated threshold accounts for 35 per-
cent of the variance, while the relationship 
between PTA2 and automated threshold account 
for 52 percent of the variance . The standard 
deviations of PTA, and PTA2, respectively, are 
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Figure S Comparison of automated thresholds and 
pure-tone averages in adults . A, PTA, (0 .5, 1, and 2 kHz) ; 
B, PTA 2 (1, 2, and 4 kHz) . 

11.3 and 9.8 dB . Kappa suggests that the abso-
lute agreement between PTAI and automated 
threshold (0.17) and PTA 2 and automated 
threshold (0.05) are slight, with only the agree-
ment between PTA, and automated threshold 
reaching statistical significance (p < .05). 

Figure 9 shows the relationship between 
PTAI and PTA2 and expert-derived thresholds. 
Once again, the regression coefficient is higher 
for PTA 2 (x = 0.68, SD = 8.8) than for PTAI (x = 
0.64, SD = 11 .0), though both are somewhat 
improved versus the automated thresholds . The 
relationships between the expert-derived 
thresholds and PTAI and PTA2 account for 46.1 
percent and 65.2 percent of the variance, re-
spectively. Kappa is somewhat higher for each 
pure-tone average versus expert-derived thresh- 
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Figure 9 Comparison of expert-derived thresholds and 
pure-tone averages in adults . A, PTA, (0 .5,1, and 2 kHz); 
B, PTA (1, 2, and 4 kHz) . 

olds (Kappa is .33 and .16 for PTA1 and PTAZ, 
respectively) than for the same comparisons 
with automated thresholds . Nevertheless, ab-
solute agreement between pure-tone averages 
and expert thresholds are only slight to fair. 
This is not surprising, given the fact that ABR 
click thresholds are highly influenced by 
audiogram configuration (Gorga, Worthington, 
Reiland, Beauchaine, and Goldgar, 1985 ; Keith 
and Greville, 1987). 

Figure 10 shows the relationship between 
infant threshold at 4 kHz and expert (A) and 
automated (B) thresholds, respectively. The 
regression coefficients between each measure 
of ABR click threshold (automated : x = 0.24, SD 
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100-

90-

80- J 
2 
CO 

O 
L 
N 
d 

70-

60- 

50-

40- x 

E 0 
x x 

30- x 

20- x ~x M 
Mx x 

XMMxxxw x 
10- x x 

x x 
0J 
0 10 20 30 40 50 60 70 80 90 100 

4 kHz Threshold (dB HL) 

Expert Click vs 4 kHz Thresholds 
100 
90- 
80- 

J 
2 70- 
CO 

60- 
0 

50- 2 
L H 

x 
40- 

CD Q 
w 

x x 
30- xx 

x x 
20- x x x 19 m ~ x 
101 xxxx x f 
0 
0 10 20 30 40 50 60 70 80 90 100 

4 kHz Threshold (dB HL) 
Figure 10 Comparison of automated thresholds and 
behavioral sound-field (4 kHz) thresholds for infants. A, 
automated thresholds ; B, expert judgments. 

= 6.9 ; expert : x = 0.31, SD = 7.0) and threshold 
at 4 kHz are poorer than the coefficients for the 
relationship between pure-tone averages and 
expert or automated scores for adults . The 
relationship between 4-kHz threshold and au-
tomated results account for only 14 percent of 
the variance, while the relationship between 
expert judgments and threshold accounts for 21 
percent. Neither the expert judgments nor the 
automated threshold values are good predic-
tors of high-frequency hearing in this group. 
This point is further made by examining Kappa, 
which shows poor agreement for both auto-
mated ( .07) and expert (.11) judgments ofthresh-
old, based upon hearing levels at 4 kHz. 
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Figure 11 Test-retest reliability for 45 subjects . 

Test-Retest Reliability 

Figure 11 shows the outcome of 45 ears, 
each of which were tested twice. The regression 
coefficient between tests 1 and 2 is 0.95 (SD = 
6.94), and 72 percent of the variance is ac-
counted for by the relationship between the two 
tests. Since infant data were collected from 
sleeping infants and adult data from largely 
wakeful adults, we expected the infant data to 
be more reliable than the adult data . This was, 
in fact, the case . The infant data had smaller 
standard deviations and higher R2 than the 
adult data (x = 1.13, SD = 8.6, R2 = 0.84 for 
infants; x = 0.92, SD =10.7, R'= 0.55 for adults). 
The overall Kappa was .77, indicating substan-
tial agreement between tests. 

Test Efficiency 

The PEST algorithm determined the 
number of runs (2 recordings with 1024 sweeps 
each) per test . For 155 tests, the minimum 
number of runs was 4, while the maximum was 
20 (mean = 7.4, SD = 2.8) . Figure 12 shows 
histograms of the number of runs required to 
converge on an automated threshold. The fig-
ure shows the modal number of runs to be 6. In 
general, large numbers of runs were associated 
with nonoptimal subject states, resulting in 
multiple artifacts and complicated response-
detection problems . Removal of these artifacts 
would significantly reduce run time . Since there 
was no appreciable time devoted to computa-
tional overhead, the average test time following 

Run Time Histogram 

2 6 10 14 18 
Number of Runs 

-Adults Infants 

Figure 12 Run-time histogram for all tests for adults 

and infants. 

placement of electrodes to determination of 
threshold was 12.6 minutes. 

DISCUSSION 

T his study describes the results of an auto-mated, threshold-seeking method of ABR 
testing. The method employs a PEST procedure 
to acquire ABR recordings at appropriate levels 
and a sliding window cross-correlation to detect 
the presence of an ABR. The method shows 
promise in that it correlates nearly as well with 
behavioral measures of hearing as do thresh-
olds determined by expert judges . In this study, 
the highest correlations were found between 
PTA 2 and click thresholds, but absolute agree-
ment was greater for PTA, and click threshold. 

A more rigorous test of the efficacy of auto-
mated threshold determination is the relation-
ship between automated ABR thresholds and 
those derived from experts viewing the same 
recordings . Automated ABR thresholds derived 
from the sliding window cross-correlation agree 
with expert-derived thresholds (within ±10 dB) 
over 96 percent of the time . Of 193 tests, 186 
agreed with experts. 

Despite the extremely small number of 
discrepancies between judges and machine 
scores, it is worthwhile to examine the probable 
cause of instances of inaccurate automated 
thresholds . The sliding window correlation 
method operates with an empirical cut-off crite-
rion . This criterion represents a fulcrum be-
tween false positives and false negatives. If the 
criterion is set high, false negatives will de-
crease. If the criterion is too low, false negatives 
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will increase . The criterion for the present study 
was chosen based on off-line preliminary analy-
sis of ABR recordings yielding a 95 percent 
confidence interval . Examination of the errors 
indicated that, as expected, the cross-correla-
tion values for these recordings were near the 
cut-off point. 

In general, human observers are not sub-
ject to the same kinds of errors as machines . 
Humans learn to use contextual information 
and ignore odd responses that do not fit into the 
general picture. Thus, a flat or noisy response is 
generally ignored if clear responses are found at 
intensities just above and below a questionable 
response . The automated decisionmaking, how-
ever, is largely based on cross-correlation . Cross-
correlation increases for noisy recordings as a 
function of chance . Thus, machine errors tend 
to be underestimates of hearing loss . 

The actual number of errors, however, was 
fewer than predicted by the confidence interval . 
Error reduction was achieved by using PEST, 
which has built-in self-correction features . When 
PEST fails to detect a response, step size is 
increased and a higher level is tested . As long as 
step size remains greater than 5 dB, the proce-
dure will move between levels at which no 
response is detected and levels at which clear 
responses are detected . Thus, an inaccurate 
designation of a nonresponse will result in an 
immediate increase in level, followed by a sub-
sequent decrease . An inaccurate designation of 
a response will generally self-correct when the 
next lowest level is tested . 

Although PEST clearly has desirable self-
correction features, it may not ultimately be the 
most effective method for threshold testing 
from a practical clinical point of view . First, an 
efficient PEST algorithm generally starts at a 
moderate level (50 dB), obviating the need for 
high-level testing. Unfortunately, responses to 
high-level signals provide valuable neurologic 
information concerning the integrity of the 
brainstem pathways . In particular, wave I can 
usually only be obtained at high levels of testing 
and is essential to determine the wave I-V 
interpeak interval . Second, since PEST does 
not test at regular level intervals, it does not 
provide all of the data needed for plotting la-
tency-intensity functions. These functions are 
helpful in providing the clinician with informa-
tion about the configuration of the audiogram. 
Third, PEST does not spend much test time at 
suprathreshold levels . Thus, it is difficult for 
clinicians to verify the integrity of the wave-
forms in their most robust forms. 

On average, 12.6 minutes were sufficient to 
test one ear with within ±5 dB accuracy, exclud-
ing time lost to artifact-rejected sweeps . The 
PEST procedure generally finished in 6 runs, 
provided no spurious reversals were obtained 
as a function of the response-recognition unit . 
When erroneous reversals were obtained, they 
tended to self-correct, but in the process, the 
PEST procedure was prolonged (to as many as 
20 runs in the current study) . Currently, a 
variety of options are being studied to further 
reduce test time in an automated threshold-
tracking system . For example, using a faster 
click rate (one that does not reduce response 
amplitude) and/or a variable sweep averager 
based on an adaptive stopping rule seem likely 
to make automated testing more time efficient . 

Regardless of the clinical properties of 
PEST, it is clear that the sliding window cross-
correlation method offers a viable alternative to 
manual testing of hearing in both adults and 
infants. The procedure demonstrates high test-
retest reliability, especially for sleeping infants. 
The procedure can easily be applied to other 
threshold-tracking methods for clinically effi-
cient automated hearing testing. 
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