Editorial

A Useful Clinical Application

Clinicians often complain that research reports in professional journals like JAAA seldom have immediate relevance to their daily activities. They are certainly correct in the sense that it usually takes some considerable time before the fruits of research find their way into everyday audiological evaluation. In this issue of JAAA, however, the interested clinician may obtain instant gratification. Contributors Dean and Martin (“Auditory and Tactile Bone-Conduction Thresholds Using Three Different Oscillators”) provide a simple and straightforward answer to a common dilemma: in patients with relatively severe losses, how can we be sure that a measured bone-conducted threshold represents an auditory, rather than a tactile, response? Using three different bone oscillators, Dean and Martin measured bone-conduction thresholds in two groups of 12 subjects each. One group had normal hearing; the other had profound bilateral sensorineural loss. The actual outcome, summarized in Table 1 for the group with normal hearing and in Table 3 for the group with profound sensorineural loss, is complicated by the fact that the thresholds are expressed relative to the appropriate norms for mastoid and forehead placement. But the underlying principle is simple. Suppose that you use only the norm for mastoid placement. What will happen if you change the vibrator placement from mastoid to forehead? If the response is truly auditory, the bone-conduction threshold should become poorer. But, if the response is truly tactile, the threshold should stay about the same or even become somewhat better. For the actual scoring, Dean and Martin provide a simple algorithm, summarized in Figures 1 and 2. Here, indeed, is an immediate clinical dividend from a research project. Results may be especially helpful in testing young children and, hopefully, in averting unnecessary surgical exploration based on a nonexistent air-bone gap.

James Jerger
Editor-in-Chief