body position, 566rainstem, 152
brainstem disorder, 161
central auditory disorders, 133, 152, 633
central auditory processing, 456
central auditory processing disorder, 117, 161
central deafness, 133
cerebrovascular accident, 106
children, 300, 486, 518, 555
chords, 616
classroom noise, 508
cochlear dead regions, 498
cochlear implant, 281, 574, 643, 678
compression, 605, 716
compression release time, 605
compression threshold, 605
conductive hearing loss, 300
consonant-vowel tokens, 47, 469
compressor, 518
computer callosal, 152
cortical cognitive potentials, 401
cortical evoked potentials aging, 226
cross correlation, 79
cross-modality matching, 486
cubic difference tone, 184
device failure, 643
dichotic listening, 79
diffuse field, 649
digital signal processing, 716
direction advantage, 353
directivity index, 440, 649
directional microphones, 216, 353, 365, 426, 440, 649
disability, 311
discrimination task difficulty, 456
distortion-product otoacoustic emission (DPOAE), 414, 555, 566, 702
distortion products, 184
distractions task, 469
dyslexia, 518
EEG derivation, 692
EEG, 692
elderly, 401
electrode position, 692
electrode voltage, 643
electromagnetic artifacts, 541
electromyography, 198
electronystagmography, 258, 324
electrophysiology, 456
event-related potential (ERP), 47, 79, 117, 401, 469, 518, 616
everyday listening situations, 365
evoked responses, 456
everyday success, 342
extraction method, 616
FM systems, 678
frequency boundaries, 281
frequency-following response, 184
distortion product, 184
frequency modulation (FM) systems, 426
functional gain, 249
gain, 605
Glasgow Hearing Aid Benefit Profile, 311
global field power, 518
head injury, 117
hearing, 566
hearing aid orientation, 311
hearing aids, 216, 311, 342, 353, 365, 440, 605, 649, 716
hearing aid outcome, 238
hearing amplification, 498
hearing disorders, 585
hearing loss, 633
hearing screening, 702
HINT sentences, 426
HINT test, 216
implantable hearing aid, 249
inferior colliculus, 133
integration, 518
late auditory evoked potential, 456
loudness, 486, 555
loudness growth, 486, 555
magnetic resonance imaging, 79
MAPs, 281
masking, 17, 29
maximum output, 249
middle latency response, 106
mild tinnitus, 269
mismatch negativity, 47, 469, 616
monofil, 649
motor evoked potentials, 198
multichannel, 716
N1-P2 complex and aging, 226
neonate, 414
nonsense syllables, 300
normal hearing, 555
objective audiometry, 692
ophthalmic impairment, 258
optimized method, 17, 29
otitis media, 300
otoacoustic emissions, 184, 269
Otologics MET, 249
P300, 666
perceived handicap, 311
perceptual masking, 585
phase locking, 184
phoneme amplitude, 605
plateau method, 17, 29
prediction, 342
prefitting hearing aid orientation, 311
presbyacusis, 401
presentation level, 6
prevalence, 633
probe-tube microphone, 249
psychosocial, 238
pure-tone audiometry, 269
questionnaire, 281
reception time, 666
rehabilitation, 238
rotational testing, 324
saccule, 198
satisfaction, 311
schoolchildren, 702
sensitivity, 414
sensorineural hearing loss, 6, 486
severe tinnitus, 269
signal-to-noise ratio, 508, 692
simple tones, 47, 469
sinusoidal amplitude modulation, 541
sound quality, 649
specificity, 414
speech competition, 456
speech intelligibility, 508
speech perception, 88, 426, 498, 574, 649
speech reception threshold, 88
speech recognition, 300, 678
speech stimuli, 616
speech tests, 281
stapedial eustachian mother, 198
stimulus onset asynchrony, 47
subtitled videos, 469
temperal processing, 184
tinnitus, 269, 585
tinnitus severity, 269
tonal frequency, 456
tonic electric potentials (SSCP), 692
vestibular function tests, 198
vestibular nerve, 198
Vibrant Soundbridge, 249
wide dynamic range compression, 605
words, 47, 469