As audiologists we tend to be preoccupied with the hearing side of speech communication. How well is the speech message understood, and how can we improve on that? But it is helpful to be reminded, on occasion, that the hearing-impaired individual is also the generator of speech messages. We must also be concerned with the effects of auditory disorders on speech production. One of the most important problems faced by the hearing-impaired speaker is keeping vocal output at an appropriate level, especially when the listener is at a distance or when there is considerable background noise.

There are three main systems for monitoring self-produced speech, (1) auditory feedback, (2) proprioceptive feedback, and (3) visual and verbal feedback from the listener. In persons with normal hearing, monitoring the level of one’s own vocal output is easily achieved, primarily via auditory feedback, but when there is hearing loss, the auditory feedback component may be compromised. Now the speaker begins to rely more on proprioceptive cues and on verbal and especially visual feedback cues by studying the speaker’s face. It is assumed that, although auditory feedback may be affected by the hearing impairment, both proprioceptive feedback and verbal/visual feedback remain intact. Indeed, more than 60 years ago Raymond Carhart (1947) advocated special training programs to help hearing-impaired persons hone their skills in exploiting both proprioceptive and verbal/visual feedback.

In this issue of JAAA, investigators from Oticon’s Eriksholm Research Center in Denmark, Søren Lauge Jensen, Claus Nielsen, Patrick Maas, and Neils Søgaard Jensen, report results of a study in which they ask how changes in auditory feedback do, in fact, affect the vocal output levels of hearing-impaired speakers. Seven hearing aid users spoke to a passive listener as both the prescription gain of an experimental aid was varied and as speaker-to-listener distance was varied. An interesting finding was that, although four of the seven experimental participants did, indeed, seemed to regulate vocal output level according to a strategy based on proprioceptive feedback, the other three participants appeared to have adopted a strategy based on auditory feedback.

These results will be of interest to all clinicians who counsel amplification users on how to control their speech output levels in different listening environments. In addition they should remind all of us that individual differences have a way of continually challenging our assumptions.

James Jerger
Editor-in-Chief

REFERENCE